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ABSTRACT 

Deformable components in multibody systems are subject to kinematic constraints the represent 
mechanical joints and specified motion trajectories. These constraints can, in general, be described 
using a set of nonlinear algebraic equations that depend on the system generalized coordinates and 
time. This paper describes an efficient procedure for the computer implementation of the absolute 
nodal coordinate formulation for flexible multibody applications. In the absolute nodal coordinate 
formulation, no infinitesimal or finite rotations are used as nodal coordinates. The configuration of 
the finite element is defined using global displacement coordinates and slopes. By using this mixed 
set of coordinates, beam and plate elements can be treated as isoparametric elements. As a 
consequence, the dynamic formulation of these widely used elements using the absolute nodal 
coordinate formulation leads to a constant mass matrix. It is the objective of this study to develop a 
an efficient computational procedure that exploits this feature. In this procedure, an optimum sparse 
matrix structure is obtained for the deformable bodies using the QR decomposition. Using the fact 
that the element mass matrix is constant, a QR decomposition of a modified constant connectivity 
Jacobian matrix is obtained for the deformable body. A constant velocity transformation is used to 
obtain an identity generalized inertia matrix associated with the second derivatives of the coordinates 
used in the absolute nodal coordinate formulation, thereby minimizing the number of non-zero entries 
of the coefficient matrix that appears in the augmented Lagrangian formulation of the equations of 
motion of the flexible multibody systems. The computational procedure proposed in this investigation 
can be used for the treatment of large deformation problems in flexible multibody systems. It has also 
the advantages of the algorithms based on the floating frame of reference formulations since it allows 
for easy addition of general nonlinear constraint and force functions. 

KEY WORDS: Multibody Dynamics, Finite Element Method, QR Decomposition, Absolute 
Nodal Coordinate Formulation, Floating Frame of Reference Formulation, 
Incremental Methods, Large Deformation, Large Rotation. 



1.        INTRODUCTION 

The performance and efficiency of multibody simulation codes depend largely on the selection of the 

coordinates used to formulate the dynamic equations of multibody systems (Kim and Vanderpoleg, 

1986; Mani et al., 1985; and Singh and Likins, 1985). The choice of the coordinates defines the 

structure of the system equations of motion as well as the numerical procedure required for the 

solution of these equations. Extensive research efforts have been devoted to examine the effect of the 

coordinate selection on the complexity of the formulation as well as the efficiency and performance 

of the computer algorithms used in rigid multibody dynamics. The research in flexible multibody 

dynamics, on the other hand, has been primarily focused on some fundamental issues related to 

modeling the dynamic motion of flexible bodies that undergo large displacements (Shabana, 1997; 

and Wasfy and Noor, 1997). Several finite element formulations have been proposed for the large 

displacement analysis of flexible multibody systems. Among these formulations are the floating frame 

of reference method (Shabana, 1989), the incremental methods (Belytschko and Hsieh, 1973; Rankin 

and Brogan, 1986), and large rotation vector formulations (Simo and Vu-Quoc, 1986). In the floating 

frame of reference formulation, which is the most widely used method for flexible multibody 

dynamics, two sets of coordinates are used to define the configuration of the flexible body. The first 

set is the set of reference coordinates which defines the location and orientation of a selected 

deformable body coordinate system. The second set is the set of elastic coordinates which defines the 

deformation of the body with respect to its coordinate system. The floating frame of reference 

formulation leads to a highly nonlinear mass matrix as the result of the inertia coupling between the 

rigid body motion and the elastic deformation. This formulation, however, can be used to obtain an 

exact representation of the rigid body dynamics and leads to zero strains under an arbitrary rigid body 
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motion, even in the case when non-isoparametric finite elements such as conventional beam and plate 

elements are used. 

Incremental finite element formulations have been successfully used in the large deformation 

analysis of structural systems. In the incremental methods, the configuration of the finite element is 

described using the element nodal coordinates. Since non-isoparametric elements can not describe 

an arbitrary large rotation, the large rotation of the element is represented as sequence of infinitesimal 

rotations. The infinitesimal rotations can then be described using the conventional element shape 

function and the element nodal coordinates. It is important to note, however, that when non- 

isoparametric elements such as beams and plates are used, the incremental methods can not be used 

to obtain exact representation of the rigid body dynamics, and such methods do not lead to zero 

strains under an arbitrary rigid body motion. For this reason, the incremental methods are not widely 

used in flexible multibody computer programs. 

The large rotation vector formulations are non-incremental and were developed to circumvent 

the partial linearization used in the finite element incremental formulations. In the large rotation 

vector formulations, absolute coordinates and finite rotations are used to define the element 

configuration. These formulations lead to a simpler inertia matrix and a more complex stiffness 

matrix. Nonetheless, the mass matrix remains nonlinear when three dimensional elements are used. 

Large rotation vector formulations also lead to excessive shear forces as the result of the description 

used for the finite rotation of the element cross section (Shabana, 1997). 

As previously pointed, the floating frame of reference formulation is the most widely used 

method in the dynamic analysis of flexible multibody systems. This formulation has been implemented 

in several commercial and research computer programs. The popularity of this method is atributed 



to the fact that general constraints and forcing functions can be systematically and easily introduced 

to the formulation and can also be implemented in the computer programs in a straightforward 

manner. However, the use of the floating frame of reference formulation has been limited to small 

deformation problems; a limitation that arises as the result of the type of coordinates and the motion 

description used in this formulation. Recently, a new procedure called the absolute nodal coordinate 

formulation was introduced (Shabana, 1997). In this formulation, a new set of finite element 

coordinates is employed. This set of coordinates consists of global displacement coordinates and 

slopes. Using this set of coordinates, beam and plate elements can be treated as isoparametric 

elements, and as a consequence, exact modeling of the rigid body dynamics can be obtained using the 

element shape function and the element nodal coordinates. Furthermore, the absolute nodal 

coordinate formulation leads to zero strains under an arbitrary rigid body motion. When such a 

formulation is used, some of the fundamental problems encountered when using the floating frame 

of reference formulation can be avoided. One of these problems is the selection of the deformable 

body coordinate system (Shabana, 1989). This problem does not arise in the absolute nodal 

coordinate formulation since the coordinates used in this formulation are all defined in the global 

system. The absolute nodal coordinate formulation also leads to a constant mass matrix, and as such, 

an efficient procedure for implementing this formulation in flexible multibody computer programs can 

be developed. 

In the general computational algorithms developed for the nonlinear dynamic analysis of 

multibody systems, nonlinear constraint equations that describe mechanical joints and specified 

motion trajectories can be systematically introduced to the dynamic formulation. This provides the 

flexibility of building computer models for mechanical systems with complex topological structure. 



By utilizing sparse matrix algebra, these models can be efficiently simulated and modified. In order 

to maintain the generality of the dynamic formulation, several of the general purpose computer 

algorithms developed for the simulation of multibody applications are based on solving the following 

system of equations (Shabana, 1994): 

M  C 

C»   ° 
(i) 

where M is the mass matrix of the system, Cq is the Jacobian matrix of the kinematic constraints, q 

is the vector of the system generalized coordinates, X is the vector of Lagrange multipliers, Qe is the 

vector offerees that include external, gravity, Coriolis, centrifugal, and elastic forces, and Qd is the 

vector resulting from the differentiation of the constraint equations twice with respect to time. For 

instance, the constraint equations can be written in the following form: 

C(q,0 = 0 (2) 

where C is the vector of constraint functions, and t is time. Upon differentiating the constarint 

equations twice with respect to time, one obtains 

Cqq = Q, (3) 

where Qd is the vector defined as 

Q,= -C„-(Cqq)qq-2Cqfq (4) 

The coefficient matrix of Eq. 1 has a sparse matrix structure. An efficient solution of this system of 



equations can be obtained if the number of non-zero entries of the nonlinear coefficient matrix is 

minimized. 

It is the objective of this investigation to develop a new computational procedure for flexible 

multibody dynamics that exploits the sparse matrix structure presented in Eq. 1. The new procedure 

is based on the absolute nodal coordinate formulation which leads to a constant mass matrix for the 

deformable body (Shabana, 1997). In the absolute nodal coordinate formulation, global displacement 

coordinates and slopes are used to define the element configuration. Connectivity conditions between 

the finite elements used in the discretization of the deformable body can be described using a set of 

linear algebraic constraint equations. Using the constant Jacobian matrix of these constraint equations 

and the fact that the system mass matrix is constant, an efficient QR decomposition for a constant 

generalized Jacobian matrix can be obtained only once before the dynamic simulation (Atkinson, 

1987; Press et al., 1992; and Strang, 1988). Orthogonal vectors resulting from this decomposition 

are used to define an identity inertia matrix associated with the coordinates of the deformable body, 

thereby minimizing the number of non-zero entries of the sparse coefficient matrix that appears in Eq. 

1. 

In the analysis presented in this investigation we distinguish between two sets of constraints. 

The first set consists of the constraints that describe the connectivity between the elements of a 

deformable body in the multibody system. These constraints are assumed to be linear functions of the 

nodal coordinates of the deformable body. We will refer to these constraints as the connectivity 

constraints. The forces resulting from these connectivity constraints will be systematically eliminated 

from the equations of motion of the deformable body using the QR decomposition of the a 

generalized constraint Jacobian matrix. The second set of constraints consists of the constraints that 



describe the joints between deformable bodies as well as the constraints that describe specified motion 

trajectories. The forces of these constraints will not be eliminated from the dynamic formulation in 

order to increase the generality of the algorithm presented in the paper. 

This paper is organized as follows. In Section 2, the absolute nodal coordinate formulation 

is briefly reviewed and the form of the constant inertia matrix associated with the coordinates used 

in this formulation is defined. In Section 3, the equations of motion of the finite elements expressed 

in terms of the element connectivity forces are presented. These element equations are used to define 

the equations of motion of the deformable body. In Section 4, the constraint equations that describe 

the connectivity of the elements of the deformable body are presented and used to define the 

connectivity constraint Jacobian matrix. Using this constraint Jacobian matrix, the element 

connectivity forces are expressed in terms of Lagrange multipliers. Utilizing the fact that the mass 

matrix of the deformable body is constant, a generalized connectivity Jacobian matrix is defined and 

its QR factors are presented in Section 5. A computational procedure for eliminating the connectivity 

forces from the equations of motion of the deformable body is presented in Section 6., while the final 

form of the equations of motion and the solution algorithm of these equations are presented in 

Section 7. Summary and discussion of the work described in this paper is presented in Section 8. 

2.        ABSOLUTE NODAL COORDINATE FORMULATION 

In the analysis presented in this paper, two dimensional beam elements are used as examples. The 

procedure developed in this investigation, however, can be also applied to three dimensional beam, 

plate and shell elements. Figure 1 shows a two-dimensional beam element which has two nodes 

defined by the points A and B. In the absolute nodal coordinate formulation, global displacements 



coordinates and slopes are used as the nodal coordinates. In this formulation, no infinitesimal or finite 

rotations are used as nodal coordinates. By using the global displacement coordinates and slopes, and 

a shape function that has a complete set of rigid body modes; beam and plate elements can be treated 

as isoparametric elements that can be used to obtain exact modeling of the rigid body dynamics 

(Shabana and Christensen, 1997). In the absolute nodal coordinate formulation, the global position 

of an arbitrary point on an element y on the deformable body / in the multibody system can be written 

as 

i* = S^ (5) 

where rv is the global position vector of an arbitrary point on the beam element, Sü is the element 

shape function which has a complete set of rigid body modes, and e"' is the vector of absolute nodal 

coordinates and slopes of the element. Using the preceding equation, the kinetic energy of the finite 

element can be defined as 

T9 = -fffiifTiffdVv 

ir (6) 
v'J 

where ptJ and VJ are the mass density and volume of the finite element y of the deformable body /'. 

Using the preceding two equations, it can be shown that the kinetic energy of the finite element can 

be written as 

r=-tifYwej (7) 

where M'y is the constant mass matrix of the element defined as 



The fact that the element mass matrix is constant plays a fundamental role in the algorithm developed 

in this investigation. Note that using the absolute nodal coordinate formulation, the mass matrix 

remains also constant when three dimensional beams are considered. As a consequence, the vector 

of Coriolis and centrifugal forces is identically equal to zero. The stiffness matrix, on the other hand, 

is a highly nonlinear function of the element coordinates, even in the case when small deformation 

problems are considered. 

Since in the absolute nodal coordinate formulation, the coordinates are defined in the global 

system; there is no reason to justify using different interpolating polynomials for the displacement 

components. For example, in the case of the beam element shown in Fig. 1, cubic polynomials can 

be used to describe both components of the displacements defined in Eq. 5. In this case, the element 

shape function can be defined as 

S'' = 
1-3^+2^ 0 /(f-24* + £) 0 

0 1-3^+2^ 0 lit-!?*?) 

3^-2^        0        !(£-£)        0      p 

0 3^-2^        0        /(4s-4s). 

(9) 

where /is the length of the element, £ = xll, and x is the axial coordinate that defines the position of 

an arbitrary point on the element in the undeformed state. Using this shape function, the vector of 

nodal coordinates of the element can be defined as 
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ey = if       Ü       Ü       if       if       if       if       ÜV- o J      o J      0 J      o J      0 J      o J      0 J      0     I el     e2     e3     e4     e5     e6     e7     e8j (10) 

where e/ and e2
J are the absolute displacement coordinates of the node at A, eg and e/ are the 

absolute displacement coordinates of the node at B, and 

e3 = 

8rx (r=0) 

dx 

drx (x=l) 

dx 

e4 = - 

dr2(x=0) 

dx 

ec = - 
dr2(x=l) 

dx 

(11) 

and rx and r2 are the components of the vector r. Using the shape function of Eq. 9, the constant mass 

matrix of the element can be evaluated, using Eq. 8, as 

MiJ = m'J 
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It can be demonstrated that the absolute nodal coordinate formulation leads to exact modeling of rigid 

body dynamics and does not lead to the linearization of the equations of motion as in the case of 



incremental formulations. The equivalence of the absolute nodal coordinate formulation and the 

floating frame of reference formulation can be demonstrated if local slopes instead of infinitesimal 

rotations are used as the local elastic coordinates in the floating frame of reference formulation. This 

equivalence was recently demonstrated by Shabana and Schwertassek (1997). 

3.        FINITE ELEMENT EQUATIONS OF MOTION 

In the dynamic formulation presented in this paper, we consider two types of constraints. The first 

type of constraints is the constraints that represent the connectivity conditions between the finite 

elements of a deformable body. These constraints are linear functions of the element nodal 

coordinates. The second type of constraints is the nonlinear constraints that represent the joints 

between different deformable bodies, or specified motion trajectories. These nonlinear constraints are 

described by Eq. 2, and will be introduced to the dynamic formulation using the technique of 

Lagrange multipliers in order to maintain the generality of the formulation. 

The first type of linear constraints that describe the connectivity of the elements of one 

deformable body will be the subject of discussion in this and the following sections. A non- 

conventional algorithm that utilizes the fact that the element mass matrix is constant will be presented 

and its advantages will be discussed. To this end, the equations of motion of the finite element y on 

the deformable body / are written as 

Mi/gy = Fv+Fy (13) 

where F/ is the vector of element forces that include the externally applied and gravity forces, and 

the elastic forces that result from the element deformation, and F/ is the vector of constraint forces 
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resulting from the connectivity of the element with the other elements used in the finite element 

discretization of the deformable body. Using the preceding equation, the equations of motion of the 

deformable body / can be written in terms of the connectivity forces as 

M'g' = F',+F^ (14) 

where M' is the mass matrix of the deformable body given in terms of the mass matrices of its 

elements as 

M' = 

M'' 

M,J       0 

M 

(15) 

in which ne is the total number of elements of the deformable body. The vectors e', Fe', and ¥J are 

defined as 

e' = 
J2 

e * 

F' = 

42 

F' = 

42 

F, 

(16) 

Note that in these equations, the elements are not assembled and none of the element coordinates is 

eliminated. The equations of the system, however, are still valid since the connectivity forces appear 

in these equations. 
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4.        JACOBIAN OF THE CONNECTIVITY CONSTRAINTS 

The constraints that describe the connectivity between the finite elements of the deformable body i 

will be formulated in this investigation using a set of algebraic equations that depend linearly on the 

nodal coordinates. In this case, these constraint equations can be written in the following form: 

fc'(e') = c (17) 

where <&" is the connectivity constraint vector, and c is a constant vector. Note that the connectivity 

constraints do not depend on time. For a virtual change of the body coordinates, the preceding 

equation leads to 

Oeöe' = 0 (18) 

where <!>«,' is the Jacobian matrix of the connectivity constraints. The connectivity constraint forces 

in Eq. 14 can be expressed in terms of the Jacobian matrix of the element connectivity constraints as 

<=-&lK (19) 

where XJ is the vector of Lagrange multipliers associated with the connectivity constraints of the 

deformable body. Substituting Eq. 19 into Eq. 14, one obtains 

M'e' = Fl-OlTAl (20) 

Since the mass matrix M' is constant and block-diagonal, its inverse can be efficiently calculated 

onlynce before the dynamic simulation and used to write the preceding equation in the following 

form: 
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e'^M't'Fi-tMt1®!1^ (21) 

which can be written as 

8' = (M')"
1
F'.-A'^ (22) 

where 

A' = (M')_1*iT (23) 

is a constant generalized Jacobian matrix. This matrix, which needs to be evaluated only once before 

the dynamic simulation, plays a significant role in the computational procedure proposed in this paper. 

5.   FACTORS OF THE GENERALIZED JACOBIAN 

The connectivity constraint forces acting on the elements of the deformable body can be 

systematically eliminated using the QR factors of the generalized Jacobian matrix of Eq. 23. Using 

thq QR decomposition, the generalized Jacobian matrix of Eq. 23 can be written as 

A' = QR (24) 

where Q is an orthogonal matrix (QT Q = I), and R is an upper-triangular matrix. If A is an m x n 

matrix, then Q is an m x n and R is n x n matrix. Since the number of connectivity constraints is 
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always smaller than the number of coordinates, m > n. In this case, the preceding equation can be 

written as (Kim and Vanderploeg, 1986) 

^'=[Qi Qj 
Ri (25) 

where Q1 and Q2 are the partitions of the orthogonal matrix Q. The dimension of Qj ism* n, while 

the dimension of Q2 is m x (m - n). Since Q is an orthogonal matrix, it follows that 

QiQ2 = 0 (26) 

It is also clear from Eq. 25 that 

A^Q^ (27) 

Using the preceding three equations, it can be verified that 

QjA' = 0 (28) 

This result will be used to eliminate the connectivity forces from the equations of motion of the 

deformable body as demonstrated in the following section. 

6.        ELIMINATION OF THE CONNECTIVITY FORCES 

Recall that the matrix A' is a constant matrix, and therefore, the matrix Q2 that results from the QR 

decomposition of A' is also constant. This fact can be utilized to obtain an efficient procedure for 

eliminating the connectivity forces and define an identity generalized inertia matrix for the deformable 
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body. To this end, the following velocity transformation is employed: 

e=Q2q' (29) 

Substituting this coordinate transformation into Eq. 18, and premultiplying by the transpose of the 

matrix Q2, one obtains 

QlQA^QlM'X-Ql^K (30) 

Since the columns of the matrix Q2 represent a set of orthogonal vectors, one has 

QlQ2 = I (31) 

Substituting Eqs. 28 and 31 into Eq. 30, one obtains 

q'^Q^M'^Fl (32) 

which shows that the generalized inertia matrix associated with the set of coordinates q' is the identity 

matrix. As a consequence, a number of non-zero entries equal to the number of the coordinates in the 

set q' needs to be stored in order to define the inertia matrix of the deformable body. Note also that 

in Eq. 32, the forces of the connections between the finite elements of the deformable body are 

eliminated. Equation 32, therefore, reduces to the simple form 

q' = Ql (33) 

where QJ is the vector of generalized forces defined as 
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Qi = Qj(M')_lFl (34) 

Equation 33 is in a fonn suitable for implementation in general purpose flexible multibody computer 

programs that exploit sparse matrix techniques. 

7.        SYSTEM EQUATIONS AND NUMERICAL PROCEDURE 

Non-linear constraints between deformable bodies can be formulated in the absolute nodal coordinate 

formualation using Eq. 2. In this case, the augmented form of the equations of motion takes the 

following form: 

I   C 

c,  o 
(35) 

where in this case the generalized inertia matrix of the system reduces to an identity matrix. In Eq. 

35, Cq is the Jacobian matrix of the kinematic constraints that describe the joints between deformable 

bodies as well as specified motion trajectories. The vector q in Eq. 35 is the vector of the system 

coordinates which can be written as 

q = qlT  q2T ,"T 

where q' is the vector of generalized coordinates of the deformable body i, and nb is the total number 

of bodies in the system. Equation 35 can be efficiently solved for the accelerations and Lagrange 

multipliers using sparse matrix techniques (Duff et al, 1986; Press et al., 1992). The vector of 

Lagrange multipliers can be used to determine the generalized joint forces. Using the constraint 
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Jacobian matrix of the joint constraints Cq, a set of independent coordinates can be identified. The 

accelerations associated with the independent coordinates can be integrated forward in time in order 

to determine the independent velocities and coordinates. Using the independent coordinates, Eq. 2 

can be solved for the dependent coordinates using a Newton-Raphson algorithm. Dependent 

velocities can be determined using the velocity kinematic relationships (Shabana, 1994) 

8. SUMMARY AND DISCUSSION 

Several finite element formulations have been proposed for the dynamic analysis and simulation of 

flexible multibody systems. Among these formulations are the floating frame of reference method, the 

incremental methods, and the large rotation vector formulations. The floating frame of reference 

formulation is the most widely used method for the dynamic analysis of flexible multibody systems 

since such a formulation allows easy addition of general constraint and force functions. The use of 

this method, however, has been limited to small deformation problems because of the nature of the 

generalized coordinates used. Incremental methods, on the other hand, had less acceptance in the 

multibody community because of the linearized kinematic equations used to describe the overall 

motion of the finite element when these methods are used. Because of this kinematic description, 

exact modeling of the rigid body dynamics can not be obtained using the incremental methods when 

non-isoparametric finite elements such as conventional beam and plate elements are used. The 

coordinates used in the non-incremental large rotation vector formulations include finite rotations 

which are described using interpolation polynomials in a similar manner to the displacement 

coordinates. Such a motion description leads to excessive shear forces that lead to serious numerical 

and fundamental modeling problems. 
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In this investigation, a new computational finite element procedure is developed for the 

computer-aided analysis of flexible multibody systems. This procedure, which is based on the absolute 

nodal coordinate formulation, leads to an optimum sparse matrix structure and allows for easy 

addition of constraints and forcing functions, thereby maintaining the main advantages of the 

algorithms based on the floating frame of reference formulation. Furthermore, the new procedure can 

be used for the large deformation analysis of flexible multibody systems, and as such, it does not 

suffer from the limitation of the floating frame of reference formulation. In the absolute nodal 

coordinate formulation, global displacement coordinates and slopes are used to define the element 

configuration. Infinitesimal or finite rotations are not used as nodal coordinates. By using this set of 

coordinates, exact modeling of the rigid body dynamics can be obtained using the element shape 

function and the nodal coordinates. As a consequence of using these coordinates, beam elements can 

be treated as isoparametric elements and an arbitrary rigid body displacement leads to zero strains. 

The absolute nodal coordinate formulation also leads to a constant mass matrix, and as a result, the 

vector of Coriolis and centrifugal forces is identically equal to zero. 

In this investigation, an efficient implementation of the absolute nodal coordinate formulations 

for flexible multibody applications is described. In the procedure described in this paper, advantage 

is taken of the fact that the element inertia matrix is constant. Two different sets of kinematic 

constraints are considered. The first set consists of the constraints that describe the connectivity of 

the elements of a deformable body in the multibody system. These constraints which are linear 

functions of the nodal coordinates are systematically eliminated using the procedure described in this 

paper. The second set consists of the constraints that describe mechanical joints between deformable 

bodies in the system as well as specified motion trajectories. These constraints are, in general, 
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nonlinear and they are not eliminated from the dynamic formulation in order to increase the generality 

of the procedure described in this paper. The equations of motion of the finite elements are first 

formulated in terms of a redundant set of coordinates. These equations are expressed in terms of the 

connectivity forces which are expressed in terms of the constraint Jacobian matrix and lagrange 

multipliers. A constant generalized Jacobian matrix is obtained using the inverse of the constant 

element mass matrix. A QR decomposition is used to determine the factors of the generalized 

Jacobian matrix. Using the orthogonal matrix in the QR decomposition, a velocity transformation 

which consists of orthogonal column vectors is developed and used to express the coordinates of the 

elements of the deformable body in terms of a reduced set of generalized coordinates. The inertia 

matrix associated with the reduced set of coordinates is the identity matrix. Using this result, an 

optimum sparse matrix structure for the equations of motion of the flexible multibody system can be 

defined. The resulting system of equations of motion can be solved using the numerical procedure 

described in Section 7. Note also that despite the fact that the element connectivity constraint forces 

are eliminated from the final form of the equation of motion, these forces can be easily computed 

using the procedure described in this paper. To this end, the nodal accelerations of the deformable 

body / can be computed from the generalized accelerations of the body using the time derivative of 

Eq. 29. These nodal accelerations can be substituted in Eq. 14 in order to determine the connectivity 

force vector F „'. 
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Figure. 1  Absolute Nodal Coordinate Formulation 


